Computing For Research:

Computational Efficiency and Precision with R

Matthew RP Parker

February 22, 2024

or:

Let’s Improve Our Research Efficiency

Matthew RP Parker

February 22, 2024

Overview

It would be nice if we could improve our research efficiency by reducing
the amount of time our research takes to do. We can accomplish this
using two related computing topics:

o Computational Efficiency
- how to reduce the computing resources required to solve problems

o Computational Precision
- how to increase the precision of computing results

February 22, 2024 3/30

Overview

Before we begin:

@ We will be framing this around R and research computing

@ however, most of these ideas can be applied to other programming languages and to
computing problems outside of research as well

@ Throughout, | will say efficiency and precision to mean computational
efficiency/precision, not statistical efficiency/precision

o Efficiency and Precision are often at odds with each other: increasing precision usually
comes at the cost of decreased efficiency

February 22, 2024 4/30

Computational Efficiency

So what is Computational Efficiency?

o Efficiency is about reducing resource costs
o Efficiency comes in three flavours:

o Time Efficiency (how long does it take to run?)
e Memory/Storage Efficiency (how expensive is the hardware?)
o Energy Efficiency (economic and environmental footprint?)

February 22, 2024 5/30

Computational Efficiency SFU

Here are a few points regarding Energy efficiency before we focus
entirely on Memory and Time efficiency:

@ Energy efficiency is extremely important for large scale projects such as training very large
learning models

@ New technologies and engineering provide large increases in efficiency over time

o Without upgrading hardware, there is still something we can do:

e increasing Time efficiency directly reduces Energy costs
e recycling energy through reuse of waste heat from compute clusters
e scheduling heavy computing tasks during off-peak electricity usage hours

February 22, 2024 6/30

Computational Efficiency SFU

If you are interested in Energy efficiency, you can read this primer on the topic?:

Scientific Programming in the Fog and Edge Computing Era

Review Article | Open Access
Volume 2021 | Article ID 5514284 | https://doi.org/10.1155/2021/5514284

Hardware and Software Solutions for
Energy-Efficient Computing in Scientific
Programming

Daniele D'Agostino[~] .1 Ivan Merelli{?) ,2 Marco Aldinucci (% and Daniele Cesini (94

!Daniele D’Agostino, Ivan Merelli, Marco Aldinucci, Daniele Cesini, “Hardware and Software Solutions for
Energy-Efficient Computing in Scientific Programming”, Scientific Programming, vol. 2021, Article ID 5514284,
9 pages, 2021. https://doi.org/10.1155/2021/5514284

https://doi.org/10.1155/2021/5514284

Measuring Efficiency

So how do we measure efficiency?

@ Memory efficiency is measured in number of bytes of drive space and peak RAM usage.

@ Time efficiency can be measured in terms of theoretical algorithm operations using Big
Oh (theoretical efficiency)

e Time efficiency can also be measured in terms of compute time (realized efficiency)

@ Big Oh is useful for understanding how a solution will scale with increasing size (depends
only on the algorithm complexity)

e Compute time is the real world time cost of the solution (depends on both the algorithm
complexity, the specific hardware used, the specific software used, and other factors such
as temperature)

February 22, 2024 8/30

Profiling Tools

Measure Efficiency Using Tools:

@ We can measure how efficient a function is overall using the R packages bench and
profvis
e bench: :mark() measures the time, the memory footprint, of one or more functions
e we will use bench: :mark () throughout this talk for illustration of different ideas
@ We can analyze the efficiency of a function line by line using profvis
e profvis() is a wrapper for Rprof

e profvis() creates a flame graph with a breakdown of resource usage for each line of code
and each function call

e it is invaluable for finding bottlenecks and discovering why your code is taking minutes to run
instead of seconds

February 22, 2024 9/30

Profiling Tools

Measure Efficiency Using Tools:

@ So which profiling method should you use?
@ | think you should use both!
@ bench: :mark() answers WHICH function uses more time or memory

o profvis() answers WHY a function uses more time or memory

February 22, 2024

For Loops: Good or Bad?

For loops are a contentious subject among R programmers, but it boils down to this:
Good for loops are good. Bad for loops are bad.

Should you use for loops:
for loops in R are not inherently bad
however, they can reduce efficiency when misused!

be aware of memory usage, allocation is an expensive operation

pre-allocate memory outside of loops

February 22, 2024 11 /30

For Loops: Good or Bad? =8

Let's compare a bad and a good for loop using the R package bench:

(bench)

@ size=le4 is the number of
random variables we are creating

l:size) { . H
el = ctralues, rmorm(l.0.13) o lst for.loop. the variable values
grows in length by one at each
iteration
Va1léf5 N TL:’!?;:_,'):C?ZGJ @ 2nd for loop: the variable values
values[i] = rnorm(1,0,1) uses pre-allocated memory

= 10)

February 22, 2024 12 /30

For Loops: Good or Bad? SFU

Let's compare a bad and a good for loop using the R package bench:

(bench)

@ 1st for loop: values grows in

size at each iteration
l:size) { .
values = c(values, rnorm(1,0,1)) @ 2nd for loop: values memory is

pre-allocated

values = numeric(size) (] 2nd |S 12X more t|me eﬂ:ICIent,

G 1l:size) { ..
values[i] = rnorm(L,0.1) and 17x more memory efficient

n median “itr/sec’ alloc “gc/sec”

1 { values 0.8ms 180ms 5.34 406.3v 10.2 10 9 1.87s

2 { values =.. 14.1ms 15ms 54.9 24 .4MB 5.49 10 1 182.12ms
February 22, 2024

Vectorization SFU

Take advantage of vectorized functions where possible.

@ Vectorization is the main reason people say “don’t

set.seed(123) use for loops in R”
values = numeric(size)

(i in l:size) { @ 1st for loop: does not take advantage of
values[i] = rnorm(1,0,1) . .
vectorization

1 : .
},Va ues @ 2nd no loop: uses vectorized function

set.seed(123) @ 2nd is 32x more time efficient, and 293x more

, values = rnorm(size,0,1) memory efficient

iterations = 10)

expressio min i 4 " mem_alloc gc/sec n_itr n_gc total t1me

<bch:byt> <int> <db/> <ochn:t

12.?m§ 24.4MB 7 83 9 1 127. 67m5
2 { set.see.. 395.5us 397.1ps 2494 . 83.2KB 0 10 0 4.01ms

February 22, 2024 14 /30

lapply, sapply, mapply, map, etc., can all be used to replace for loops.
Sometimes faster, sometimes slower.

set.seed(123)

values = numeric(size) @ for loop: an explicit loop
G 1l:size) {

values[i] = rnorm(1,0,1) @ sapply: an implicit loop

- values @ very comparable, but for loop
' performs marginally better here

set.seed(123)
values = sapply(l:size,) {rnorm(1,0,1)1})

“itr/sec’ mem_alloc n_gc total_time

b P
<db > <bch:

> > <ap om.

1 { set.seed(. 13ms 13.2ms) 1 131ms
2 { set.seed(.. 19.2ms 19.7ms . 1 179ms

February 22, 2024 15 /30

Parallelization SFU

Sometimes code can be run simultaneously to increase time efficiency.
The R package doParallel allows you to do this with ease.

@ makeCluster(n) creates a cluster of n compute cores

@ foreach mimics the structure of a for loop

@ ‘doparY instructs R to split the iterations over available compute cores
(dorParallel)

cl <- makeCluster(10)
registerDoParallel(c1)

foreach(i=1:10) %dopar% {
fO

February 22, 2024 16 /30

Parallelization

Here we have a contrived example:

(doParallel)

c1 <- makeCluster(10)
ceietae ol el el @ the parallel loop is 10x more

r ton s time efficient
{ sys.sleep(0. .
@ the for loop is 80x more memory

efficient

@ parallelization is usually a
trade-off: spend more energy

(compute cores) and spend more

memory to reduce compute time

“itr/sec’ mem_alloc

.
>

1 { for (i in 1:10. 08s 1:095 0.916 9.56KB
2 { foreach(i = 1:.. 108.13ms 109.24ms 9.17 763.61KB

February 22, 2024

Sometimes, R code is just too slow. The truly efficient functions in R are
generally written in c/cpp.

@ we can use profiling (profvis()) to find the bottlenecks in our code

@ if we find one function or section of code is slowing everything else down, we can consider
writing it in a faster, lower level programming language

@ Rcpp is an R library which allows you to easily? write your own cpp functions in R

2ease of use requires some knowledge of cpp

February 22, 2024 18 /30

Modelling Techniques =8

Often we choose modelling frameworks to fit a research problem. Other
times we have more latitude to choose...

Eg: parameter estimation in a likelihood setting. Could use frequentist approach (MLE), or
Bayesian (probabilistic programming/MCMC).

@ if one framework is slow, the other might be comparatively fast!

o Bayesian is often less efficient than frequentist approach due to large iterations
needed to estimate the posterior distribution

@ however, large numbers of latent states can be computationally challenging for MLE
(integration from likelihood), while sampling latent states is relatively inexpensive

@ it can be worthwhile to test different frameworks when running into large
computation times with your particular application

February 22, 2024 19 /30

Mathematical Techniques =8

When the usual solutions aren’t enough, sometimes you can transform
your compute problem into one which is more efficiently solved.

solve linear systems with efficient libraries: RcppEigen, RcppArmadillo
recognize convolutions which are VERY slow to compute, instead solve using FFT3

use asymptotic statistics to find more efficient solutions

Finding ways to apply fast algorithms to common problems is a very important field of
research! If you find a fast method to solve a common problem, you can publish your new
algorithm, and help a lot of researchers to improve their own research efficiency

3Parker, M.R.P., Cowen, L.L.E., Cao, J., Elliott, L.T. Computational Efficiency and Precision for
Replicated-Count and Batch-Marked Hidden Population Models. JABES 28, 43-58 (2023).
https://doi.org/10.1007 /s13253-022-00509-y

Computational Precision

What is Precision?

In statistics:

accuracy is how close your point estimate is to the true value: | X — y
precision is how closely clustered your point estimates are 1/65(

In computation:

precision is how accurately values are REPRESENTED during computing, and how
accurate the RESULTS are at the end of computing

precision has an upper bound based on the number of bits used to represent information

precision usually decreases every time a calculation is performed

February 22, 2024

Integer vs Numeric Types

In R, numbers can be either Integer or Numeric
(defaulting to numeric in most cases)

@ integer vs numeric

.Machine$integer.max
object.size(1:10)

.Machine$double.xmax
object.size(as.double(1:10))

@ integer vectors use less memory

@ numeric numbers have higher precision

February 22, 2024 22/30

Overflow SFU

Overflow occurs when a value is too large to store using the current
precision level:

Integer overflow produces a warning and an NA:

Numeric overflow produces a result of “Inf", which stores no numeric information:

February 22, 2024 23/30

Underflow =8

Underflow means something different for integers and numerics:

o Integer Underflow: the integer is too small to represent (R calls this an overflow, but it
is often referred to as integer underflow elsewhere)

[1] -2147483647

[1] NA

@ Numeric Underflow: the number is too small in magnitude to represent, and is thus
truncated to zero

[1] 2.220446e-16

[1] 1.976263e-323

[1] O

February 22, 2024 24 /30

Log Transforms

SFU

Numeric underflow is a major issue in statistical research computing: a
very small probability is NOT a zero probability.

@ log transforms usually work well to solve this problem:

[1] -15.65356

[1] -322.6536

[1] -323.6536

@ however, logs can easily fail when addition is needed:

[1] o

[1] -Inf

February 22, 2024 25 /30

LogSumExp Trick =8

@ you can use our R package quickNmix with function LogSumExp to solve this problem

o LSE (LogSumExp) takes advantage of the highest precision floating point region to
provide computational stability

Consider two very small numerics x and y, stored as ¢x = log(x) and £y = log(y)
Then LSE is simply:

LSE(¢x,ly) = v + log(exp(¢x — v) + exp(Ly — v)), v = max(lx, Ly)

WLOG, suppose that £x > Ly, then a little algebra gives:
LSE(¢x, Ly) = €x + log[1 + exp(Ly — £x)]

let z = exp(Ly — {x), then we have log(1 + z) bounded between 0 and 1 (an interval with
highest computational precision according to |IEEE 754)

[1] -744.5467

February 22, 2024 26 /30

Sometimes, 64 bit precision is just not enough!

Examples which can require very high precision include:

@ Astrophysics modelling such as binary star systems and gravitational forces

e climate modelling and weather systems (loss of precision accumulates with time)

@ physical modelling of interacting particles (especially at high energies)

e studying chaotic systems (even very small inaccuracies can invalidate research results)

@ probability systems with large numbers of discrete states (when asymptotics and
approximations cannot be used)

February 22, 2024 27 /30

Rmpfr SFU

MPER is an acronym for “Multiple Precision Floating-Point Reliably”

® RMPFR: an R package for high precision computing
@ based on GNU MPFR (open source, portable to work on many platforms)

@ R stores numerics in physical computer registers
(precision stuck at 64 bits for standard modern computers)

@ RMPEFR instead uses RAM to store the high-precision numerics
(precision limited only by system RAM)

@ however, there is an enormous cost to using RMPFR, since it replaces a hardware
solution for a software solution
(RMPFR is always slower, and can be hundreds of thousands of times slower)

@ solutions like RMPFR should be a last resort, because computation times quickly become
infeasible for even small sized problems

February 22, 2024

Rmpfr vs LSE SFU

We can use RMPFR or LSE to solve the same problems, so lets compare!

2 mark (@ our toy example was

Rmpfr: :mpfr(.Machinefdouble.eps, precBits = 128) /og(x/y —+ X/y), where X/y
Rmpfr: :mpfr(1e308, precBits = 128) . L.
underflows at 64 bits precision

},1°g(x/y 2 B @ now we compare RMPFR with

{
Tx = Tog(.MachinesdoubTe. eps) 128 bits of precision against

1y = - Tog(1e308) LogSumExp
quickNmix: : :TogsumExp (c(1x-Ty, Ix-Ty))
}l

iterations = 100, check =)

A tibble: 2 x 13
expression min median “itr/sec’ mem_alloc "gc/sec’ n_itr n_gc total_time result memory
<bch:expr> <bch:> <bch:> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm> <list> <Jist>

1 { x = Rmpfr::mp.. 1.16ms 1.23ms T 8.11 99 1 123ms <NULL> <Rprofmem

2 { Tx = Tog(.Mac... 6us 6.6us . 0 100 0 694us <NULL> <Rprofmem
i 2 more variables: time <list>, i

LSE is 180x more time efficient here than RMPFR, and RMPFR uses 1.6kb more RAM

February 22, 2024 29/30

Conclusion

Recap:

Efficiency and Precision go hand in hand:

Computational Efficiency is a necessary consideration for many scientific computing tasks
more efficient computing leads to more efficient research

Computational Precision is a necessary consideration for all scientific computing tasks
low precision can invalidate research results

Compute Precision comes at a heavy cost in terms of Computational Efficiency

higher precision causes lower efficiency

The difficulty is to find a trade-off where precision is high enough, but compute
time is feasible

February 22, 2024 30/30

	Overview
	Computational Efficiency
	Measuring Efficiency
	Profiling
	For Loops: Good or Bad?
	Vectorization
	*-apply
	Parallelization
	Rcpp
	Modelling Frameworks
	Mathematical Techniques

	Computational Precision
	Integer vs Numeric Types
	Overflow
	Underflow
	Log Transforms
	Log Sum Exp Trick
	Rmpfr

	Conclusion

